89.4k views
11 votes
Find the unit tangent vector at the given value of t for the following parameterized curves.

r(t)= ⟨7–√e^t,3e^t,3e^t⟩

, for 0≤t≤1
; t=ln 2

1 Answer

0 votes

Answer:


T(ln2)
= <√(145) , (6√(2) )/(√(145) ) , (6√(2) )/(√(145) ) >

Explanation:

Given :
r(t)=<7-√(e^t), 3e^t,3e^t > .........(i)

We first have to differentiate of equation
(i)


r'(t) = < (√(e^t) )/(2) , 3e^t,3e^t> ..........(ii)

Now to get a unit tangent vector at the given value of
t, we put
t = ln2 in equation
(ii)


r'(ln2) = < \frac{\sqrt{e^(ln2)} }{2} , 3e^(ln2),3e^(ln2)>


= <(1)/(√(2) ) ,6,6> [∵
e^(lna)=a]

Now to get a unit tangent vector , we will divide our vector
r'(ln2) by its magnitude. So let's first find the magnitude.


|r'(ln2)|=\sqrt{((1)/(√(2) ) )^2 +6^2+6^2}


= \sqrt{(1)/(2)+36+36 }


= \sqrt{(145)/(2) }

Now we can find the our unit tangents vector.


T(ln2)=(r'(ln2))/(|r'(ln2)|)


= \frac{<(1)/(√(2)) ,6,6> }{\sqrt{(145)/(2)} }


= <\frac{(1)/(√(2) ) }{\sqrt{(145)/(2)} } ,\frac{6}{{\sqrt{(145)/(2)} }}, \frac{6}{{\sqrt{(145)/(2)} }} >


= <√(145) , (6√(2) )/(√(145) ) , (6√(2) )/(√(145) ) >

Hence,
T(ln2)
= <√(145) , (6√(2) )/(√(145) ) , (6√(2) )/(√(145) ) >

User Firoz Ahmed
by
4.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.