Answer:
![T(ln2)](https://img.qammunity.org/2022/formulas/mathematics/college/nxkm2mje5ovvtyr8h90u5295njcy6d3jst.png)
![= <√(145) , (6√(2) )/(√(145) ) , (6√(2) )/(√(145) ) >](https://img.qammunity.org/2022/formulas/mathematics/college/kimczp480f3atbdmrz2p1kdnzn7djp4n94.png)
Explanation:
Given :
![r(t)=<7-√(e^t), 3e^t,3e^t > .........(i)](https://img.qammunity.org/2022/formulas/mathematics/college/6o9clkc49r88276nn2ud69ay5nx0qj7ttt.png)
We first have to differentiate of equation
![(i)](https://img.qammunity.org/2022/formulas/mathematics/college/41xhkiakrl045i5610johho10rj7mz80v2.png)
![r'(t) = < (√(e^t) )/(2) , 3e^t,3e^t> ..........(ii)](https://img.qammunity.org/2022/formulas/mathematics/college/inho5n9gh1v53e5nfkw7g3ez6pbvcqzc4v.png)
Now to get a unit tangent vector at the given value of
, we put
in equation
![(ii)](https://img.qammunity.org/2022/formulas/mathematics/college/ixeay4a81a6nph3xuckcbm3fkbbb1nb98i.png)
![r'(ln2) = < \frac{\sqrt{e^(ln2)} }{2} , 3e^(ln2),3e^(ln2)>](https://img.qammunity.org/2022/formulas/mathematics/college/c0sv1ogd8bo5c3ikunbl7ju9idwdc5r05c.png)
[∵
]
Now to get a unit tangent vector , we will divide our vector
by its magnitude. So let's first find the magnitude.
![|r'(ln2)|=\sqrt{((1)/(√(2) ) )^2 +6^2+6^2}](https://img.qammunity.org/2022/formulas/mathematics/college/4jedk9p1cmjf4w8b117mcnkxyra5x77qrj.png)
![= \sqrt{(1)/(2)+36+36 }](https://img.qammunity.org/2022/formulas/mathematics/college/ssuv3yzjohb3z02kxpgd6k072wq11eaovd.png)
![= \sqrt{(145)/(2) }](https://img.qammunity.org/2022/formulas/mathematics/college/9bhpnimmy6bbyhaedk322zb8ea46qlsexk.png)
Now we can find the our unit tangents vector.
![T(ln2)=(r'(ln2))/(|r'(ln2)|)](https://img.qammunity.org/2022/formulas/mathematics/college/yknfgw3sejnmpffdzx74b8zjw1d1shwfcx.png)
![= \frac{<(1)/(√(2)) ,6,6> }{\sqrt{(145)/(2)} }](https://img.qammunity.org/2022/formulas/mathematics/college/ymx97wlj9zruzpdyavq4zldqnl8n0g9ecz.png)
![= <\frac{(1)/(√(2) ) }{\sqrt{(145)/(2)} } ,\frac{6}{{\sqrt{(145)/(2)} }}, \frac{6}{{\sqrt{(145)/(2)} }} >](https://img.qammunity.org/2022/formulas/mathematics/college/af8orl2h37aaj2o8xtbhoo92gcyz4n6wg8.png)
![= <√(145) , (6√(2) )/(√(145) ) , (6√(2) )/(√(145) ) >](https://img.qammunity.org/2022/formulas/mathematics/college/kimczp480f3atbdmrz2p1kdnzn7djp4n94.png)
Hence,
![= <√(145) , (6√(2) )/(√(145) ) , (6√(2) )/(√(145) ) >](https://img.qammunity.org/2022/formulas/mathematics/college/kimczp480f3atbdmrz2p1kdnzn7djp4n94.png)