Answer:
Average power, P = 845 watts
Step-by-step explanation:
It is given that,
High power laser has a beam diameter of 1 mm, d = 1 mm
Radius, r = 0.0005 m
Electric field,
![E=0.9\ MV/m=0.9* 10^6\ V/m](https://img.qammunity.org/2020/formulas/physics/college/lp3wwwnsl8909pqzq3xrjjhik8b4n4wpuy.png)
Average power of the laser is given by :
![P=I* A](https://img.qammunity.org/2020/formulas/physics/college/mobuv7jjnbsbt04rf4vu78rg0ybkh2ve42.png)
Where
I is the intensity,
![I=(1)/(2)\epsilon_oE^2c](https://img.qammunity.org/2020/formulas/physics/college/izefzl59lodg0czlk871j2fsxirszmywiz.png)
This gives,
![P=(1)/(2)\epsilon_oE^2c * \pi r^2](https://img.qammunity.org/2020/formulas/physics/college/6aerl3fzxzlw7vi16qgay7csydfibbs7xu.png)
![P=(1)/(2)\pi r^2\epsilon_oE^2c](https://img.qammunity.org/2020/formulas/physics/college/n0db7uejlipx1r9ubpae7k77bt71tno0r3.png)
![P=(1)/(2)\pi * (0.0005)^2* 8.85* 10^(-12)* (0.9* 10^6)^2* 3* 10^8](https://img.qammunity.org/2020/formulas/physics/college/lpo4koijx46gqsljoqlc5v5xoqprkr648q.png)
P = 844.51 watts
or
P = 845 watts
So, the average power of the laser is 845 watts. Hence, this is the required solution.