Answer:
Capacitive reactance of the capacitor is 68 ohms
Step-by-step explanation:
It is given that,
Capacitance,
![C=0.094\ \mu F=0.094* 10^(-6)\ F](https://img.qammunity.org/2020/formulas/physics/college/hu0fy1wp0zq359cnuxjprn336jjwdr0828.png)
Frequency,
![f=25\ kHz=25* 10^3\ Hz](https://img.qammunity.org/2020/formulas/physics/college/7wo1aevjlrw39cth1zrvzk05thazcsjtkn.png)
Capacitive reactance is given by :
![X_C=(1)/(2\pi fC)](https://img.qammunity.org/2020/formulas/physics/college/5h2kot3ug9zdpne91mpjw4lwzelcq9vpyb.png)
![X_C=(1)/(2\pi 25* 10^3* 0.094* 10^(-6))](https://img.qammunity.org/2020/formulas/physics/college/f6g3to0y3y6231spmbuaksaaqfbj8jbw6s.png)
![X_C=67.72\ \Omega](https://img.qammunity.org/2020/formulas/physics/college/1qfxya0wawl6kloq5leyhf6m6zzzdt1v2d.png)
or
![X_C=68\ \Omega](https://img.qammunity.org/2020/formulas/physics/college/vwgipozduzjyrwrqe0wpyaye70wn12jk9e.png)
So, the capacitive reactance of the capacitor is 68 ohms. Hence, this is the required solution.