161k views
4 votes
9) Given dx/dt = ax(x – K) & dy/dt = - Bxy, solve for:

A) x in terms of t. Ans. B) y in terms of t. Ans.

1 Answer

7 votes

Answer:

Explanation:


x = (K)/(1-Ce^(akt)) and
y =Pe^)

Explanation:

One approach to solve this problem is first to solve
(dx)/(dt) = ax(x-K) for x in terms of t and then substitute this answere in
(dy)/(dt)=- Bxy.

Starting with


(dx)/(dt) =ax(x-K), we can use the separation of variables method.


(dx)/(ax(x-K)) = dt, integrating


\int (dx)/(ax(x-K)) = \int dt


\int (dx)/(ax(x- K)) = t + c

For solving the integral
\int (dx)/(ax(x- K)) we use partial fraction decomposition method:


\int (1)/(ax(x- K))dx = \int ((A)/(ax) +(B)/(x- K) ) dx

this leads us to the equation:


1=aBx +Ax -AK, as it can be seen, we can use this to construc a system of equations


  1. 1 =-AK and,

  2. 0=aBx+AX =aB + A

from 1. we get
A=(-1)/(K) and, from 2. we get
B= (1)/(aK).

Now


\int (1)/(ax(x- K))dx =\int ((-1/K)/(ax) + (1/aK)/(x- K) ) dx

so, we get:


\int ((-1/K)/(ax) + (1/aK)/(x- K)) dx = t+ c


(-1)/(aK)\int (1)/(x)dx + (1)/(aK)\int(1)/(x- K) dx = t+ c

Now we end up with some easily solving integrals


(-1)/(aK)ln|x|+ (1)/(aK)ln|x-K| + m = t+ c, m is the integration cosntant.


(1)/(aK)ln|(x-K)/(x)| + m = t+ c


ln|(x-K)/(x)| = aKt+ c_(1)


|(x-K)/(x)| = e^{aKt+ c_(1)}


|x-K| = |x|e^{aKt+ c_(1)}, taking in count only positive values for x and K


x-K = xe^{aKt+ c_(1)}

then after solving for x we end up with the answer:


x = (K)/(1-Ce^(aKt)).

Now for
(dy)/(dt) = - Bxy, we subtitute our last result and get


(dy)/(dt) = - By (K)/(1-Ce^(aKt)), by using the separation of variables method:


(dy)/(y) = (-BK)/(1-Ce^(aKt))dt, integrating


ln|y| +p  = \int (-BK)/(1-Ce^(aKt))dt,

using the substitution method and letting


u = 1-Ce^(aKt), our integral takes the form


ln|y| + p=(-B)/(a)\int (du)/(u(u-1)), using partial fraction decomposition method we end up with


ln|y| + p =(-B)/(a)\int((G)/(u)+(F)/(u-1))du, leading us to


  1. -G=1

  2. G+ F =0

From this:
G=-1 and,
F=1, thus


ln|y| + p =(-B)/(a)\int((-1)/(u)+(1)/(u-1))du , integrating


ln|y| + p_(1) =(-B)/(a)(-ln|u|+ln|u-1|)


ln|y| + p_(1) =(-B)/(a)(ln|(u-1)/(u)|) , remembering


u=1-Ce^(aKt) , we get


ln|y|+p_(1) =(-B)/(a)(ln|( -Ce^(aKt))/( 1-Ce^(aKt))|)


ln|y|=(-B)/(a)(ln|( 1)/( 1-Ce^(-aKt))|)-p_(1)


ln|y|=(-B)/(a)(ln|( 1)/( 1-Ce^(-aKt))|)-p_(1)


|y|=e^{(-B)/(a)(ln|( 1)/( 1-Ce^(-aKt))| )-p_(1)


|y|=Pe^(-B)/(a)(ln, for y positive the answer is:


y =Pe^( 1)/( 1-Ce^(-aKt))

User SGhaleb
by
6.7k points