Answer:
Q=0.00274 Lt/s
Step-by-step explanation:
Given that
Darcy friction factor f=0.04
Diameter of pipe d=10 mm
We know that for laminar flow
![Re=(16)/(f)](https://img.qammunity.org/2020/formulas/engineering/college/rkonqqrrza6jzhc6zi9qlb8qsn3p0sd3kr.png)
Where Re is the Reynolds number and f is the friction factor.
Now by putting the values
![Re=(16)/(0.04)](https://img.qammunity.org/2020/formulas/engineering/college/bfqg0xd6p16od4lrhy7ggjdvky3bqdmroc.png)
Re=400
We know that
![Re=(\rho Vd)/(\mu )](https://img.qammunity.org/2020/formulas/engineering/college/c8p14bxsjg4e2vu1fx4as6god54h6zs5d0.png)
for water
![400=(1000 * 0.01V)/(8.9* 10^(-4))](https://img.qammunity.org/2020/formulas/engineering/college/2k6d8pzxwmhxsdp03y7hoz29f15jhgsobh.png)
V=0.035 m/s
So volume flow rate Q=AV
![Q=(\pi)/(4)* 0.01^2* 0.035](https://img.qammunity.org/2020/formulas/engineering/college/x1av972ppfth975ayrfihznrwnxz81xb1k.png)
Q=0.00274 Lt/s