Answer:
Diameter, d = 4237.14 meters
Step-by-step explanation:
It is given that,
On earth you can jump straight up a distance of 36 cm, h = 36 cm = 0.36 m
Asteroids are made of material with mass density,
![d=2800\ kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/7qc6ko1ga2ulfsn07t3psvp1x8xv4ewl0q.png)
Escape velocity is given by :
![v=\sqrt{(2GM)/(R)}](https://img.qammunity.org/2020/formulas/physics/college/um31ev1u0ym7kio1y03zmh9pb1gaqrrz79.png)
![R=(2GM)/(v^2)](https://img.qammunity.org/2020/formulas/physics/college/p5gjdef9e92x20fppo0vjjzdm517gktdaq.png)
Where
G is the universal gravitational constant
M is the mass
Density,
![d=(M)/(V)](https://img.qammunity.org/2020/formulas/physics/college/8x4hx1pdys9gpnq9jto9z063ne65iso7vl.png)
Density,
![d=(M)/(4/3 \pi R^3)](https://img.qammunity.org/2020/formulas/physics/college/46xg1amppjft5dzbjoziisog24wyf43084.png)
..............(2)
Now using conservation of energy as :
![(1)/(2)mv^2=mgh](https://img.qammunity.org/2020/formulas/physics/college/6ql0e4xndgzyfvs8n2bj7jjzf80kv0cfgx.png)
![v=√(2gh) =√(2* 9.8* 0.36)=2.65\ m/s](https://img.qammunity.org/2020/formulas/physics/college/lbjgdyagydwoyp4cfe8lkryvwd602u7iyy.png)
![R=(2* 6.67* 10^(-11)* 11728.61\ R^3)/((2.65)^2)](https://img.qammunity.org/2020/formulas/physics/college/zsv5redul9hwngincp3f41vqfvobynmwtp.png)
![R^2=((2.65)^2)/(2* 6.67* 10^(-11)* 11728.61)](https://img.qammunity.org/2020/formulas/physics/college/7t8catjhtya3e81dvcwfc1bzh5ex19leo8.png)
Radius, R = 2118.57 m
Diameter, d = 2R
![d=2* 2118.57=4237.14\ m](https://img.qammunity.org/2020/formulas/physics/college/mbzklmywoc5153owhsw5oppazx0635vdw4.png)
So, the maximum diameter of a spherical asteroid from which you could escape by jumping is 4237.14 meters. Hence, this is the required solution.