Answer:
(a) 0.3778 eV
(b) Ratio = 0.0278
Step-by-step explanation:
The Bohr's formula for the calculation of the energy of the electron in nth orbit is:
![E=\frac {-13.6}{n^2}\ eV](https://img.qammunity.org/2020/formulas/physics/college/sc4igb5r7lrjjaqlmecais3ehcnk5n7zqx.png)
(a) The energy of the electron in n= 6 excited state is:
![E=\frac {-13.6}{6^2}\ eV](https://img.qammunity.org/2020/formulas/physics/college/3lstrmugktl9mkwe10yyobrxi7qpjg8yu4.png)
![E=-0.3778\ eV](https://img.qammunity.org/2020/formulas/physics/college/yrrt7cqr43iu3co5wnw76n5utgs33fjuxg.png)
Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV
(b) For first orbit energy is:
![E=\frac {-13.6}{1^2}\ eV](https://img.qammunity.org/2020/formulas/physics/college/ba4tpdjxq31wtb004yhj1wjx90u3kg3vjd.png)
![E=-13.6\ eV](https://img.qammunity.org/2020/formulas/physics/college/uvjxe64yih45grlzuy0y76keykdabjewxq.png)
![Ratio=\frac {E_6}{E_1}](https://img.qammunity.org/2020/formulas/physics/college/xs73q51ddeerk1lkpqz0wvgblc5js63zbn.png)
![Ratio=\frac {-0.3778}{-13.6}](https://img.qammunity.org/2020/formulas/physics/college/d465sqjslc4bddq99ipy0n1agkhv9lk0is.png)
Ratio = 0.0278