207k views
5 votes
What is the simplest form of ^3 sqrt x^10

A: 3^3sqrtx

B: x^3sqrtx

C:x^3^3sqrtx

D:3c^3sqrtx

2 Answers

5 votes

Answer:

C on edge 2021

Explanation:

User Sujey
by
6.5k points
2 votes

Answer:

C.
x^3\cdot \sqrt[3]{x}

Explanation:

You are given the expression
\sqrt[3]{x^(10)}

Rewrite
x^(10) as
x^3\cdot x^3\cdot x^3\cdot x

Now


\sqrt[3]{x^(10)}=\sqrt[3]{x^3\cdot x^3\cdot x^3\cdot x}

For odd n, use the property of radicals


\sqrt[n]{ab} =\sqrt[n]{a} \cdot\sqrt[n]{b}

Hence


\sqrt[3]{x^(10)}=\sqrt[3]{x^3\cdot x^3\cdot x^3\cdot x}=\sqrt[3]{x^3}\cdot \sqrt[3]{x^3}\cdot \sqrt[3]{x^3}\cdot \sqrt[3]{x}=x\cdot x\cdot x\cdot\sqrt[3]{x}=x^3\cdot \sqrt[3]{x}

User Ptival
by
6.2k points