150k views
1 vote
Prove that

Cos (A+B) + Sin (A-B) = 2sin(45+A).cos(45+B)

User Cynic
by
7.5k points

1 Answer

2 votes

Answer:

Explanation:

cos (A+B) + sin (A-B) = 2 sin (45°+A) cos (45° + B)

= 2 (sin45°cosA + cos45°sinA)(cos45°cosB - sin45°sinB)

But sin45=cos45 =(sqrt2)/2

= 2 ((sqrt2)/2 *cosA + (sqrt2)/2 *sinA)((sqrt2)/2 *cosB -(sqrt2)/2 *sinB)

= 2 ((sqrt2)/2 *(cosA + sinA))*((sqrt2)/2 *(cosB - sinB))

= 2*(sqrt2)/2 * (sqrt2)/2 * (cosA + sinA)*(cosB - sinB)

= (cosA + sinA)*(cosB - sinB)

= cosAcosB +sinAcosB -cosAsinB - sinAsinB

Regrouping:

= (cosAcosB- sinAsinB) + (sinAcosB -cosAsinB)

= cos (A+B) + sin (A-B)

User Gudwlk
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories