Answer:
![P(X=10) = 0.1222](https://img.qammunity.org/2022/formulas/mathematics/college/wmcfpbloppol7es88x1rrbexabb4y36jpm.png)
Explanation:
Represent Green with G
So,
![G = 50\%](https://img.qammunity.org/2022/formulas/mathematics/college/hlq1utlmutg2xn2n17eq89cu5vbhx86qaa.png)
Required
Determine the probability that 10 out of 16 prefer green
This question is an illustration of binomial distribution and will be solved using the following binomial distribution formula.
![P(X=x) = ^nC_xG^x(1-G)^(n-x)](https://img.qammunity.org/2022/formulas/mathematics/college/lx6r9ue4d4i6g80rd10v36zoo1g971rw5c.png)
In this case:
-- number of people
-- those that prefer green
So, the expression becomes:
![P(X=10) = ^(16)C_(10)G^(10)(1-G)^(16-10)](https://img.qammunity.org/2022/formulas/mathematics/college/tqen8dgfa3pobqeivxq4duwx2mcyv2iigf.png)
![P(X=10) = ^(16)C_(10)G^(10)(1-G)^(6)](https://img.qammunity.org/2022/formulas/mathematics/college/ruqzr5y5f4ansd38pjl7ocqhaq5zkcdgor.png)
Substitute 50% for G (Express as decimal)
![P(X=10) = ^(16)C_(10)*0.50^(10)*(1-0.50)^(6)](https://img.qammunity.org/2022/formulas/mathematics/college/qjov818tvv6j1x2x0ah1zttpm1358if046.png)
![P(X=10) = ^(16)C_(10)*0.50^(10)*0.50^(6)](https://img.qammunity.org/2022/formulas/mathematics/college/fx5c7ync8zjl5mvwyktsyb8kzyhg1mdqlq.png)
Apply law of indices
![P(X=10) = ^(16)C_(10)*0.50^{10+6](https://img.qammunity.org/2022/formulas/mathematics/college/3gpn6glgbt2egp9wi0wxqg8pj86pm6a5t9.png)
![P(X=10) = ^(16)C_(10)*0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/c34x1hselnp8v5os3y7ul4gv7vj514bbud.png)
Solve 16C10
![P(X=10) = (16!)/((16-10)!10!) *0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/8xzca0b9rtuo0h3ulcxh9q0zd0rxzv7rdz.png)
![P(X=10) = (16!)/(6!10!) *0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/25zhcjgwn0l6o34y24p66gx4z9irifg1rk.png)
![P(X=10) = (16*15*14*13*12*11*10!)/(6!10!) *0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/r9nf6l7r98z2w1kugme7m1ktxi8mfbhciw.png)
![P(X=10) = (16*15*14*13*12*11)/(6!) *0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/sdr3sg7p6a909hzv7lgbusl0ukdlnqty40.png)
![P(X=10) = (16*15*14*13*12*11)/(6*5*4*3*2*1) * 0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/uabtmem0hvnhjoflz7mh6r8igzlw42kjh5.png)
![P(X=10) = (5765760)/(720) * 0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/2j8m1i4ed30zqobp6jng0qwwmpnwy7dcpo.png)
![P(X=10) = 8008 * 0.50^{16](https://img.qammunity.org/2022/formulas/mathematics/college/uc7kkrxa4wfs8u5ufe8iyaztlfnnrmght8.png)
![P(X=10) = 8008 * 0.00001525878](https://img.qammunity.org/2022/formulas/mathematics/college/5yhatvsmkeyfpk5ae62ewluqszgixinh68.png)
![P(X=10) = 0.12219231024](https://img.qammunity.org/2022/formulas/mathematics/college/ingfzjtke9i5qggymvj08y7mxg9ka4lyf1.png)
![P(X=10) = 0.1222](https://img.qammunity.org/2022/formulas/mathematics/college/wmcfpbloppol7es88x1rrbexabb4y36jpm.png)
Hence, the required probability is 0.1222