185k views
2 votes
Please solve 5 f
(Trigonometric Equations)
#salute u if u solved it

Please solve 5 f (Trigonometric Equations) #salute u if u solved it-example-1

1 Answer

4 votes

Answer:


\beta=45\degree\:\:or\:\:\beta=135\degree

Explanation:

We want to solve
\tan \beta \sec \beta=√(2), where
0\le \beta \le360\degree.

We rewrite in terms of sine and cosine.


(\sin \beta)/(\cos \beta) \cdot (1)/(\cos \beta) =√(2)


(\sin \beta)/(\cos^2\beta)=√(2)

Use the Pythagorean identity:
\cos^2\beta=1-\sin^2\beta.


(\sin \beta)/(1-\sin^2\beta)=√(2)


\implies \sin \beta=√(2)(1-\sin^2\beta)


\implies \sin \beta=√(2)-√(2)\sin^2\beta


\implies √(2)\sin^2\beta+\sin \beta- √(2)=0

This is a quadratic equation in
\sin \beta.

By the quadratic formula, we have:


\sin \beta=\frac{-1\pm \sqrt{1^2-4(√(2))(-√(2) ) } }{2\cdot √(2) }


\sin \beta=(-1\pm √(1^2+4(2) ) )/(2\cdot √(2) )


\sin \beta=(-1\pm √(9) )/(2\cdot √(2) )


\sin \beta=(-1\pm3)/(2\cdot √(2) )


\sin \beta=(2)/(2\cdot √(2) ) or
\sin \beta=(-4)/(2\cdot √(2) )


\sin \beta=(1)/(√(2) ) or
\sin \beta=-(2)/(√(2) )


\sin \beta=(√(2))/(2) or
\sin \beta=-√(2)

When
\sin \beta=(√(2))/(2) ,
\beta=\sin ^(-1)((√(2) )/(2) )


\implies \beta=45\degree\:\:or\:\:\beta=135\degree on the interval
0\le \beta \le360\degree.

When
\sin \beta=-√(2),
\beta is not defined because
-1\le \sin \beta \le1

User Salar Rastari
by
5.9k points