Answer:
The answer is 4/9 if the problem is:
.
Explanation:
I think this says:
.
Please correct me if I'm wrong about the problem.
Here are some useful limits we might use:
![\lim_(u \rightarrow 0)(\sin(u))/(u)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/deuhbtfmfdiqmjmhqx2p2f5rdwj546zejk.png)
![\limg_(u \rightarrow 0)(\cos(u)-1)/(u)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m9cakmhljj9y9eleep02ccl9xg2n4bf1ga.png)
So for our limit... I'm going to multiply top and bottom by the conjugate of the bottom; that is I'm going to multiply top and bottom by
:
![\lim_(\theta \rightarrow 0)(1-\cos(4\theta))/(1-\cos(6\theta))\cdot(1+\cos(6\theta))/(1+\cos(6\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a2hvrid2ahchyjpls9sg7xs4xb70sqh1xa.png)
When you multiply conjugates you only have to do first and last of FOIL:
![\lim_(\theta \rightarrow 0)((1-\cos(4\theta))(1+\cos(6\theta)))/(1-\cos^2(6\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j0179vzpore8eh4fgrea5kgae47ba2rmr9.png)
By the Pythagorean Identities, the denominator is equal to
:
![\lim_(\theta \rightarrow 0)((1-\cos(4\theta))(1+\cos(6\theta)))/(\sin^2(6\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjbfd3chll4p9irhr9he4paeyyjtjkpw33.png)
I'm going to divide top and bottom by
in hopes to use the useful limits I mentioned:
![\lim_(\theta \rightarrow 0)(((1-\cos(4\theta))(1+\cos(6\theta)))/(36\theta^2))/((\sin^2(6\theta))/(36\theta^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fkfd1fl491vkztqkp43gob0a02t04m7j2c.png)
Let's tweak our useful limits I mentioned so it is more clear what I'm going to do in the following steps:
![\lim_(\theta \rightarrow 0)(\sin(6\theta))/(6\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mvchnkkmfsrss6n5v65z0nksox77ppkwh3.png)
![\lim_(\theta \rightarrow 0)(\cos(4\theta)-1)/(4\theta)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/turfs5ys5wa8ae7swk1yk4croo99d1wntj.png)
The bottom goes to 1. The limit will go to whatever the top equals if the top limit exists.
So let's look at the top in hopes it goes to a number:
![\lim_(\theta \rightarrow 0)(1-\cos(4\theta))/(36\theta^2) \cdot (1+\cos(6\theta)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9folqezfo196281idz303fxii8run3gv3u.png)
We are going to multiple the first factor by the conjugate of the top; that is we are multiply top and bottom by
:
![\lim_(\theta \rightarrow 0)(1-\cos(4\theta))/(36\theta^2) \cdot (1+\cos(4\theta))/(1+\cos(4\theta)) \cdot (1+\cos(6\theta)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hzy8ken1mgip2xkl4i2ubz8h95kv6qdxbz.png)
Recall the thing I said about multiplying conjugates:
![\lim_(\theta \rightarrow 0)(1-\cos^2(4\theta))/(36\theta^2) \cdot (1+\cos(6\theta))/(1+\cos(4\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n0xqokas1hmz1t8nbad3dlhgipvcuv4h5d.png)
We are going to apply the Pythagorean Identities here:
![\lim_(\theta \rightarrow 0)(\sin^2(4\theta))/(36\theta^2) \cdot (1+\cos(6\theta))/(1+\cos(4\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pd3hfu6me2uwy50z75e6v63gxpdjdpy2ep.png)
![\lim_(\theta \rightarrow 0)(\sin^2(4\theta))/((9)/(4)(4\theta)^2) \cdot (1+\cos(6\theta))/(1+\cos(4\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ryv058qgrkwywgjdz8zhkzro5d626fj7uj.png)
![\lim_(\theta \rightarrow 0)(4)/(9)(\sin^2(4\theta))/((4\theta)^2) \cdot (1+\cos(6\theta))/(1+\cos(4\theta))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fiuhr4zf2hmyczzddg6elnxow6yb10f0wq.png)
Ok this looks good, we are going to apply the useful limits I mentioned along with substitution to find the remaining limits:
![(4)/(9)(1)^2 (1+\cos(6(0)))/(1+\cos(4(0)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5vaec1s84cu7cjixqwbi5oj114rephzvnv.png)
![(4)/(9)(1)(1+1)/(1+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r80p31d5c611uh7ukonggt9w33xxcpu6hz.png)
![(4)/(9)(1)(2)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ou7zseg63hrg3pm321e2wecrhrknyibn9k.png)
![(4)/(9)(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yg1yxgm4mzv4i6e8qgmx7ztjaz6xvn1zn3.png)
![(4)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/593x9cj6xundf4nbj5w1lrrseodoyrkzjn.png)
The limit is 4/9.