60.5k views
1 vote
Please help i dont get this at all

Please help i dont get this at all-example-1

2 Answers

2 votes

Answer:


(20y^(2) a^(2) )/(41bx^(3) )

Explanation:

1) Flip the second fraction and change the operation to multiplication:


(5x^(2)y^(3)  )/(2a^(5)b^(4)  ) *  (8a^(7)b^(3)  )/(41x^(5)y  )

2) Cross cancel factors:


(5y^(2)   )/(2b  ) *  (8a^(2)  )/(41x^(3)  )

3) Multiply:


(40y^(2) a^(2) )/(82bx^(3) )

4) Simplify:


(20y^(2) a^(2) )/(41bx^(3) )

User CaMiX
by
4.9k points
4 votes

Answer:

The correct option is D)
(20y^2a^2)/(41x^(3)b).

Explanation:

Consider the provided expression.


(5x^2y^3)/(2a^5b^4)/ (41x^5y)/(8a^7b^3)

Apply the fraction rule:
(a)/(b)/ (c)/(d)=(a)/(b)* (d)/(c)

Change the expression by using the above rule:


(5x^2y^3)/(2a^5b^4)* (8a^7b^3)/(41x^5y)


(5x^2y^3* \:8a^7b^3)/(2a^5b^4* \:41x^5y)


(40a^7y^3b^3x^2)/(82a^5x^5b^4y)


(20a^7y^3b^3x^2)/(41a^5x^5b^4y)

Apply the exponent rule:
(x^a)/(x^b)=(1)/(x^(b-a))


(20a^(7-5)y^(3-1)b^(3-4)x^(2-5))/(41)


(20a^2y^2b^(-1)x^(-3))/(41)

Again apply the exponent rule:


(20y^2a^2)/(41x^(3)b)

Hence, the correct option is D)
(20y^2a^2)/(41x^(3)b).

User David Hall
by
5.5k points