Answer:
8b) 2x+
x
8c)
![(x-3√(x) +2 )/(x-4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vt4lxp60cupgvfeqfwko302n3g2b846lc1.png)
Explanation:
8b)
Multiply the top and bottom by 2+
to rationalize this fraction
![(x)/(2-√(3) ) * (2+√(3) )/(2+√(3) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/z60gjhgg2g0x7ltik4mki6qujc2ozjh66u.png)
Simplify the product
![(x(2+√(3)) )/(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vziic9vw4o3uz4z3l4396s5ix3fwukou9h.png)
Distribute x through the parenthesis
2x+
x
8c)
Multiply the top and bottom by
to rationalize this fraction
![((√(x)-1)*(√(x)-2) )/((√(x)+2)*(√(x)-2) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/81hgt1uzzzjyi79vmf3ttppahho2f8ldou.png)
Simplify the product
![(x-2√(x)-√(x)+2 )/(x-4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fg8qz8qg97gpdm0xfz7kub13s4zsdtbprf.png)
Collect like terms
![(x-3√(x) +2 )/(x-4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vt4lxp60cupgvfeqfwko302n3g2b846lc1.png)