208k views
0 votes
HELP ASAP!!! Suppose θ is an angle in the standard position whose terminal side is in Quadrant IV and cotθ = -7\18

Find the exact values of the five remaining trigonometric functions of θ.

HELP ASAP!!! Suppose θ is an angle in the standard position whose terminal side is-example-1

1 Answer

2 votes

Answer:

The answer is the third option

Part 1)
csc(\theta)=-(√(373))/(18)

Part 2)
sin(\theta)=-(18)/(√(373))

Part 3)
tan(\theta)=-(18)/(7)

Part 4)
sec(\theta)=(√(373))/(7)

Part 5)
cos(\theta)=(7)/(√(373))

Explanation:

we know that

If angle theta lie on Quadrant IV

then

The function sine is negative

The function cosine is positive

The function tangent is negative

The function secant is positive

The function cosecant is negative

step 1

Find
csc(\theta)

we know that


cot^(2) (\theta)+1=csc^(2) (\theta)

we have


cot(\theta)=-(7)/(18)

substitute


(-(7)/(18))^(2)+1=csc^(2) (\theta)


(49)/(324)+1=csc^(2) (\theta)


(373)/(324)=csc^(2) (\theta)

square root both sides


csc(\theta)=-(√(373))/(18)

step 2

Find
sin(\theta)

we know that


csc(\theta)=(1)/(sin(\theta))

we have


csc(\theta)=-(√(373))/(18)

therefore


sin(\theta)=-(18)/(√(373))

step 3

Find
tan(\theta)

we know that


tan(\theta)=(1)/(cot(\theta))

we have


cot(\theta)=-(7)/(18)

therefore


tan(\theta)=-(18)/(7)

step 4

Find
sec(\theta)

we know that


tan^(2) (\theta)+1=sec^(2) (\theta)

we have


tan(\theta)=-(18)/(7)

substitute


(-(18)/(7))^(2)+1=sec^(2) (\theta)


(324)/(49)+1=sec^(2) (\theta)


(373)/(49)=sec^(2) (\theta)

square root both sides


sec(\theta)=(√(373))/(7) -----> is positive

step 5

Find
cos(\theta)

we know that


sec(\theta)=(1)/(cos(\theta))

we have


sec(\theta)=(√(373))/(7)

therefore


cos(\theta)=(7)/(√(373))

User Michael Cohen
by
8.3k points