Answer:
The volume of solid will be
cubic unit
Explanation:
Given: The given curves
![y=(x^2)/(16)](https://img.qammunity.org/2020/formulas/mathematics/college/guvwb8c690ns3ombyjsi9jhte1y6qrpzx2.png)
Rotation about y-axis to form a solid bounded by given curve, x=2 and y=0.
Please see the attachment for figure.
Volume of solid rotation about y-axis using cylindrical shell method.
![V=\int_a^b2\pi rhdx](https://img.qammunity.org/2020/formulas/mathematics/college/nseyfi2g75e6omiebbactyo21w7lsuvemi.png)
where,
a is lower limit (a=0)
b is upper limit (b=2)
r is radius (r=x)
h is height (
)
using the above formula the volume of solid we get
![V=\int_0^22\pi\cdot(x^3)/(16)dx](https://img.qammunity.org/2020/formulas/mathematics/college/7lb2vhonb8k5i99c11wlqez5a5fny0tra8.png)
![V=2\pi\cdot(x^4)/(64)|_0^2](https://img.qammunity.org/2020/formulas/mathematics/college/1h2cghp74yvr36r4ftlz81gzvpra744qpb.png)
![V=(\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/bqi435uhaoxw6y3qhukmt3k7n3e87j1dxb.png)
Hence, The volume of solid will be
![(\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/i58h6sao5ravojswc4h1w2p9hw2bns336a.png)