111k views
12 votes
Write an exponential function in the form y=ab^x 0,6 2,96

User Jill Cheng
by
3.6k points

1 Answer

11 votes

Answer: y = 20*4^x

Step-by-step explanation:to find the value of the constants a and b, we just need to use the points given in the equation and solve the system of equations:

point (0,20): x = 0 and y = 20:

20 = a*b^0 = a*1 = a

a = 20

point (2,320): x = 2 and y = 320

320 = 20 * b^2

b^2 = 16

|b| = 4

b = 4 or b = -4

So we have two exponencial equations that pass through these points:

y = 20*4^x and y = 20*(-4)^x

As the questions asks for just one equation, we can answer y = 20*4^xIf you have two points, (x1, y1) and (x2, y2), you can define the exponential ... these points by substituting them in the equation y = abx and solving for a and b. ... In this form, the math looks a little complicated, but it looks less so after you ... Taking 1910 as the starting point, this gives the pair of points (0, 1.75) and (100, 6.87). which well turn out to be y=6(4)^x

User Espenhw
by
3.2k points