30.0k views
2 votes
Simplify this radical.
Square root of x to the 13th power

User Phyl
by
7.9k points

2 Answers

2 votes

Answer:


\large\boxed{\sqrt{x^(13)}=x^6√(x)}

Explanation:


\sqrt{x^(13)}=\sqrt{x^(12+1)}\qquad\text{use}\ a^na^m=a^(n+m)\\\\=\sqrt{x^(12)x^1}\qquad\text{use}\ √(ab)=√(a)\cdot√(b)\\\\=\sqrt{x^(12)}\cdot√(x)=\sqrt{x^(6\cdot2)}\cdot√(x)\qquad\text{use}\ (a^n)^m=a^(nm)\\\\=√((x^6)^2)\cdot√(x)\qquad\text{use}\ √(x^2)=|x|\\\\=|x^6|√(x)=x^6√(x)\ \text{because}\ x^6\geq0

User Ron Serruya
by
8.3k points
4 votes

Answer:

x^6
√(x)

Explanation:

we have:


\sqrt{x^(13)}

we can write:


\sqrt{x^(13)} :
\sqrt{x^(2)*x^(2)*x^(2)*x^(2)*x^(2)*x^(2)*x}

we know:


\sqrt{x^(2)} = x

so we have:


\sqrt{x^(13)} =
\sqrt{x^(2)*x^(2)*x^(2)*x^(2)*x^(2)*x^(2)*x}

we have:


\sqrt{x^(2)*x^(2)*x^(2)*x^(2)*x^(2)*x^(2)*x}=


x^(6) √(x)

User JOV
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories