54.4k views
1 vote
Use the identity below to complete the tasks:

a3 + b3 = (a + b)(a2 - ab + b2)

Use the identity for the sum of two cubes to factor 8q6r3 + 27s6t3.

What is a?
What is b?

User Pedro
by
7.4k points

2 Answers

2 votes

Answer:

a= 2q^2r

b=3s^t

Explanation:

User Brian Putnam
by
8.2k points
7 votes

Answer:


a=[2q^(2)r]


b=[3s^(2)t]

Explanation:

we have


8q^(6)r^(3)+27s^(6)t^(3)

we know that


8q^(6)r^(3)=(2^(3))(q^(2))^(3)r^(3)=[2q^(2)r]^(3)


27s^(6)t^(3)=(3^(3))(s^(2))^(3)t^(3)=[3s^(2)t]^(3)

therefore


a=[2q^(2)r]


b=[3s^(2)t]

substitute


a^(3) +b^(3)=(a+b)(a^(2) -ab+b^(2))


[2q^(2)r]^(3) +[3s^(2)t]^(3)=([2q^(2)r]+[3s^(2)t])([2q^(2)r]^(2) -[2q^(2)r][3s^(2)t]+[3s^(2)t]^(2))


[2q^(2)r]^(3) +[3s^(2)t]^(3)=([2q^(2)r]+[3s^(2)t])([4q^(4)r^(2)] -6[q^(2)r][s^(2)t]+[9s^(4)t^(2)])

User Mike Finch
by
8.3k points