Answer: ($3.055, $3.205)
Explanation:
Given : Significance level :
![\alpha: 1-0.95=0.5](https://img.qammunity.org/2020/formulas/mathematics/college/wbrhzn4mwhtmixl1oy915skjtdxx1ph5ds.png)
Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
Sample size : n= 36
Sample mean :
![\overline{x}=\$\ 3.13](https://img.qammunity.org/2020/formulas/mathematics/college/6h4qkxdv1ea7umabp5v9qe3dwdpk1i5uhh.png)
Standard deviation :
![\sigma= \$\ 0.23](https://img.qammunity.org/2020/formulas/mathematics/college/fhat5uc3yapv7dhfq1swsfa9x2vzoo02cp.png)
The confidence interval for population mean is given by :_
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/physics/high-school/8ob9lxp74mdevwdfxubejzkzkpzvqay12m.png)
![\text{i.e. }\$\ 3.13\pm (1.96)(0.23)/(√(36))\\\\\approx\$\ 3.13\pm0.075\\\\=(\$\ 3.13-0.075,\$\ 3.13+0.075)=(\$\ 3.055,\$\ 3.205)](https://img.qammunity.org/2020/formulas/mathematics/college/znlph4zimkkic26eu7jj76c1twn0ek5pi4.png)
Hence, the 95% confidence interval to estimate the population mean = ($3.055, $3.205)