Answer: 0.6065
Explanation:
Given : The machine's output is normally distributed with
![\mu=27\text{ ounces per cup}](https://img.qammunity.org/2020/formulas/mathematics/high-school/1b7wbkit8ncsfnxdmxveqp5bs4wy3m13ix.png)
![\sigma=3\text{ ounces per cup}](https://img.qammunity.org/2020/formulas/mathematics/high-school/fomwyv3iekxn6jcxwopgczw1r7dfuxk7go.png)
Let x be the random variable that represents the output of machine .
z-score :
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
For x= 21 ounces
![z=(21-27)/(3)\approx-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/fvq1lxkby4uzvhahd0mk8ovmejeux6cf71.png)
For x= 28 ounces
![z=(28-27)/(3)\approx0.33](https://img.qammunity.org/2020/formulas/mathematics/high-school/489p0mi3cq1h4f8ozsdilfw2nh5z1e3w39.png)
Using the standard normal distribution table , we have
The p-value :
![P(21<x<28)=P(-2<z<0.33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u625cb0f6jlca2c76werbkg5jth52h67nk.png)
![P(z<0.33)-P(z<-2)=0.6293-0.0227501=0.6065499\approx0.6065](https://img.qammunity.org/2020/formulas/mathematics/high-school/aasqxg2urhq5dcaw8hvk3f0azysulld5wv.png)
Hence, the probability of filling a cup between 21 and 28 ounces= 0.6065