64.0k views
0 votes
Find the explicit solution for:
dX/dt=(x-1)(2x-1), ln(2x-1/x-1)=t

User Yoshika
by
8.1k points

1 Answer

4 votes


(\mathrm dx)/(\mathrm dt)=(x-1)(2x-1)

is a separable ODE, as


(\mathrm dx)/((x-1)(2x-1))=\mathrm dt

Decompose the left side into partial fractions:


\frac1{(x-1)(2x-1)}=\frac1{x-1}-\frac2{2x-1}

Then integrating both sides gives


\displaystyle\int\left(\frac1{x-1}-\frac2{2x-1}\right)\,\mathrm dt=\int\mathrm dt


\ln|x-1|-\ln|2x-1|=t+C

Solve for
x(t):


\ln\left|(x-1)/(2x-1)\right|=t+C


(x-1)/(2x-1)=e^(t+C)=Ce^t


x-1=(2x-1)Ce^t


x(1-2Ce^t)=1-Ce^t


\implies\boxed{x(t)=(1-Ce^t)/(1-2Ce^t)}

User Adam Larsen
by
7.7k points