Answer:
![(0.04,\ 0.21)](https://img.qammunity.org/2020/formulas/mathematics/college/nzf1f6ow6z4w2s6qot9z5tdefi74113cts.png)
Explanation:
The confidence interval for population proportion is given by :-
![p_1-p_2\pm z_(\alpha/2)\sqrt{(p_1(1-p_1))/(n_1)+(p_2(1-p_2))/(n_2)}](https://img.qammunity.org/2020/formulas/mathematics/college/2870i6c3aw1k3xvkoytkpxbge87s3nuapv.png)
Given : Significance level :
![\alpha=1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/hw7rszmzf85gg8hr51vodzmidxo6k6eals.png)
Critical value :
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
![n_1=400 ;\ p_1=(160)/(400)=0.4](https://img.qammunity.org/2020/formulas/mathematics/college/peq1t02nmm65rrpqgsh9a7u08aerkonlyc.png)
![n_2=400 ;\ p_2=(110)/(400)=0.275](https://img.qammunity.org/2020/formulas/mathematics/college/gwqnnkp31yi2fdez7sgs9xk9h9267uu6hm.png)
Then a 99% confidence interval is constructed to estimate the difference in population proportions which possess the given characteristic will be :-
![0.4-0.275\pm (2.576)\sqrt{(0.4(1-0.4))/(400)+(0.275(1-0.275))/(400)}\\\\\approx0.125\pm0.085=(0.125-0.085,0.125+0.085)=(0.04,\ 0.21)](https://img.qammunity.org/2020/formulas/mathematics/college/h7m85owgngybw4vyacgtzhwvl4vigjj8a5.png)
Hence, the resulting confidence interval is
.