Answer:
The final angular velocity of the disks is 25 rpm.
Step-by-step explanation:
Given that,
Angular velocity
![\omega_(1)= 30\ rpm](https://img.qammunity.org/2020/formulas/physics/college/15v2fi4rsekrypctziz1kv5duz61zui7t3.png)
Angular velocity
![\omega_(2)=20\ rpm](https://img.qammunity.org/2020/formulas/physics/college/3ujhqfj78jd0olzyn96ebb4v8bwgwcid9q.png)
We need to calculate the angular velocity
Using formula of angular momentum
![L=I\omega](https://img.qammunity.org/2020/formulas/physics/college/p3mzdr50d87077dazhan8nsycc03bmphm7.png)
Before the drop, the angular momentum of the system
![L_(s)=I\omega_(1)+I\omega_(2)](https://img.qammunity.org/2020/formulas/physics/college/t1b2ezv21ycmad3a3njb5xpbt9y4o4rani.png)
![L_(s)=I(\omega_(1)+\omega_(2))](https://img.qammunity.org/2020/formulas/physics/college/yvfx52uh97lvxwn5whxs72cx08avshwvm6.png)
![L_(s)=I(30+20)](https://img.qammunity.org/2020/formulas/physics/college/1txli4jj0rk85v0pwne6hno4ge5i0xb7t9.png)
....(I)
When both disk rotates together then the total moment of inertia is twice the inertia of one disk
![L_(s)=2I\omega](https://img.qammunity.org/2020/formulas/physics/college/t2w00swi3kawlye2eobi46x25j6zbnisxh.png)
From equation (I)
![2I\omega=I*50](https://img.qammunity.org/2020/formulas/physics/college/32lmpv8qrmx4bet5suhud21sod2mjit5zj.png)
![\omega=25\ rpm](https://img.qammunity.org/2020/formulas/physics/college/99kqmltyllcb8qsob52ys8zv31szzul9bl.png)
Hence, The final angular velocity of the disks is 25 rpm.