Answer: 3.49
Explanation:
When standard deviation is known then the test statistic for difference of two population means (independent population) is given by :-
![z=\frac{\overline{X}-\overline{Y}}{\sqrt{(\sigma_1^2)/(n_1)+(\sigma_2^2)/(n_2)}}](https://img.qammunity.org/2020/formulas/mathematics/college/kgtslo57x86pbp7eoizh01j4r6eh6br8rq.png)
Given :
![n_1=86\ \ , \ n_2=113](https://img.qammunity.org/2020/formulas/mathematics/college/i6cixd4z5vigpv326hjhb0uxtiw6xf4wyr.png)
![\overline{X}=45.67\ \ , \ \overline{Y}=39.87](https://img.qammunity.org/2020/formulas/mathematics/college/6wkef4mk5z1lu43ll89hsi24g1182tb34b.png)
![\sigma_1=10.90\ \ ,\ \sigma_2=12.47](https://img.qammunity.org/2020/formulas/mathematics/college/1fl1ogwp2r7i1eehozj5vscx4ntvfckdj7.png)
Then , the value of the test statistic will be :-
![z=\frac{45.67-39.87}{\sqrt{((10.9)^2)/(86)+((12.47)^2)/(113)}}\\\\=(5.8)/(√(2.757625787))=3.4926923081\approx3.49](https://img.qammunity.org/2020/formulas/mathematics/college/d5fgosmsspshfwbn0x0h3p8xbynti4q6ty.png)
Hence, the value of the test statistic = 3.49