![7k^2-16k+100=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wq076ija7jmotr7wzja894586lifn28ryx.png)
![7k^2-16k=-100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s7zi7m4huldwt6gqw31t1k0kmxyw9f2ir6.png)
Add a squared constant to both sides:
![7k^2-16k+c^2=c^2-100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r1hurm5louzf436abod0knafzjcgw7n5ho.png)
On the left, we wish to condense the quadratic into a squared binomial,
![(\sqrt7\,k-c)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zqdfb5hbplbab6mugjlazbsy1v2a11lo8h.png)
Expanding this gives
![7k^2-2c\sqrt7\,k+c^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ar3vl6ae02uku3f439u4fa2nr7l94uhr6r.png)
which tells us
![-2c\sqrt7=-16\implies c=\frac8{\sqrt7}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/irt7kjtq95ioc14lnhyomp4wa4hk2nwyjt.png)
Then
, and
![\left(\sqrt7\,k-\frac8{\sqrt7}\right)^2=\frac{64}7-100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4d0umqqcmu6ec5yob7ng43gyh25hux0iw0.png)
![\left(\sqrt7\,k-\frac8{\sqrt7}\right)^2=-\frac{636}7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tadjuyjamozvm1t0rmn6nab1qf168qbubo.png)
If you're looking for real-valued solutions, there are none, since the square root of a negative number doesn't exist... but if you're allowing complex-valued solutions, we can take the square root of both sides to get
![\sqrt7\,k-\frac8{\sqrt7}=\pm 2i\sqrt{\frac{259}7}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m2i4i7fx38kumwba8rvgckluiygr4lgmnd.png)
Multiply both sides by
to eliminate denominators, then solve for
:
![7k-8=\pm 2i√(259)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/viuffflwa35s4a1whlryabnwtwr912d4e8.png)
![7k=8\pm 2i√(259)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/srynaa3jp1e5p6gch61ov4cb4bvqzarrii.png)
![\boxed{k=\frac{8\pm2i√(259)}7}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lz1aa2jiav1emh8iocw5qmjghz16mk3elb.png)