220k views
3 votes
Let X1, . . . ,Xn be an i.i.d. random sample from a N(0, 1) population. Define Y1 = 1 n n X i=1 Xi , Y2 = 1 n n X i=1 |Xi| . Calculate E(Y1) and E(Y2), and compare them.

User Mehdok
by
5.7k points

1 Answer

3 votes

For each
1\le i\le n,
E[X_i]=0, so that


\displaystyle E[Y_1]=E\left[\frac1n\sum_(i=1)^nX_i\right]=\frac1n\sum_(i=1)^nE[X_i]=0

Meanwhile,


\displaystyle E[Y_2]=\frac1n\sum_(i=1)^nE[|X_i|]

Each of the
X_i have PDF


f_(X_i)(x)=\frac1{√(2\pi)}e^(-x^2/2)

for
x\in\Bbb R. From this we get


E[|X_i|]=\displaystyle\frac1{√(2\pi)}\int_(-\infty)^\infty|x|e^(-x^2/2)\,\mathrm dx=√(\frac2\pi)\int_0^\infty xe^(-x^2/2)\,\mathrm dx=√(\frac2\pi)


\implies E[Y_2]=n√(\frac2\pi)

User Martin Clarke
by
5.1k points