Answer: The
for the reaction is -32.130 kJ
Step-by-step explanation:
For the given chemical reaction:
![A(g)+2B(g)\rightleftharpoons 2C(g)](https://img.qammunity.org/2020/formulas/chemistry/high-school/de0qxz4ebsvbt5ofgm7unrhnsvgbxdf3sw.png)
The expression of
for the given reaction:
![K_p=((p_(C))^2)/((p_(A))* (p_(B))^2)](https://img.qammunity.org/2020/formulas/chemistry/high-school/vtdkbdot3awyfcn4dmf6k83xinyme02aus.png)
We are given:
![p_(A)=1.3atm\\p_(B)=1.5atm\\p_(C)=2.7atm](https://img.qammunity.org/2020/formulas/chemistry/high-school/mtlup4sfrhk8nzss8d0crhz3wb4cmgcv9g.png)
Putting values in above equation, we get:
![K_p=((2.7)^2)/(1.3* (1.50)^2)\\\\K_p=2.5](https://img.qammunity.org/2020/formulas/chemistry/high-school/pxip0yj27i39xbr9r09e4i4hcp7siio4bk.png)
To calculate the Gibbs free energy of the reaction, we use the equation:
![\Delta G=\Delta G^o+RT\ln K_p](https://img.qammunity.org/2020/formulas/physics/high-school/ofsa929wgixme94u6pgy8t72kde33mre9e.png)
where,
= Gibbs free energy of the reaction = ?
= Standard Gibbs' free energy change of the reaction = -34.4 kJ = -34400 J (Conversion factor: 1 kJ = 1000 J)
R = Gas constant =
![8.314J/K mol](https://img.qammunity.org/2020/formulas/chemistry/college/746mbxazbiyt61x5px0umyuuc59b9j7u4i.png)
T = Temperature =
![25^oC=[25+273]K=298K](https://img.qammunity.org/2020/formulas/physics/high-school/h3swi627jfkpg7vx7in8p5pe35bz1gwehq.png)
= equilibrium constant in terms of partial pressure = 2.5
Putting values in above equation, we get:
![\Delta G=-34400J+(8.314J/K.mol* 298K* \ln(2.5)\\\\\Delta G=-32129.82J=-32.130kJ](https://img.qammunity.org/2020/formulas/chemistry/high-school/gqy0d1g5cximyn7gvicibhiums2w456srq.png)
Hence, the
for the reaction is -32.130 kJ