Answer:
C.
![Z=51^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pil9n3t76fv0l2mclol01ar4nter2ri9cy.png)
Explanation:
We have been given a triangle. We are asked to find the measure of angle Z using Law of cosines.
Law of cosines:
, where, a, b and c are sides opposite to angles A, B and C respectively.
Upon substituting our given values in law of cosines, we will get:
![16^2=19^2+18^2-2(19)(18)\cdot \text{cos}(Z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/juo7er3814wimayb0z09h6czl1e27oaf1c.png)
![256=361+324-684\cdot \text{cos}(Z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/igmupii9hn38cuhlc8muckzaeq1ye6d7x3.png)
![256=685-684\cdot \text{cos}(Z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ajftoyekpcvwa28zheizlv4cvlutof4h1p.png)
![256-685=685-685-684\cdot \text{cos}(Z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2459xi5mh1sg7xj5rmtjouynf4jvylmk4n.png)
![-429=-684\cdot \text{cos}(Z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h6root0fjngyjom415s5a1zbzsgr0omxft.png)
![(-429)/(-684)=\frac{-684\cdot \text{cos}(Z)}{-684}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w8ige5my5ch1a9mle4nfkin4crdyeklgv9.png)
![0.627192982456=\text{cos}(Z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jy0po07xoel13wxlkgcgm8bwkjugodgtgi.png)
![\text{cos}(Z)=0.627192982456](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bjs4hxnhzor66echnll8xttzznexvxn90n.png)
Now, we will use inverse cosine or arc-cos to solve for angle Z as:
![Z=\text{cos}^(-1)(0.627192982456)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mjt197km8i892qx4nonra7iefkrkcxtuc0.png)
![Z=51.1566718^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/schs5hu9pti9rrhtuag0q8kt6nicwkmg1h.png)
![Z\approx 51^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sw136lkrbvx80fph3slqhad2v2mzmyuiqg.png)
Therefore, the measure of angle Z is approximately 51 degrees.