The roots of the equation
are complex numbers and can be expressed as:
![\[ x = (12 \pm 6i√(6))/(-20) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qyke2aac3m5chvysaslbnjuvnlo7y9yl87.png)
![\[ x = (6 \pm 3i√(6))/(-10) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rynhlngu9xpmnfub256bsgti767fu4adfa.png)
How to get the roots of the equation
In your equation, a = -10, b = 12, and c = -9. Plugging these values into the formula, we get:
![\[ x = (-b \pm √(b^2 - 4ac))/(2a) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pz7lrdyyit9cxt4dx8zk524o5zicsf6auv.png)
a = -10 , b = 12, and c = -9 . Now, substitute these values into the quadratic formula:
![\[ x = (-12 \pm √((12)^2 - 4(-10)(-9)))/(2(-10)) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qr855ky06k2mpt03e46cgj3bfdems5bf3r.png)
Simplify inside the square root:
![\[ x = (-12 \pm √(144 - 360))/(-20) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dwdq4fbpkj7kx44x1gydikiuoohb45xcai.png)
![\[ x = (-12 \pm √(-216))/(-20) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/190l9yqqz2gk354f5k1i0y4uloon3baqbn.png)
The square root of -216 is \
(where ( i ) is the imaginary unit).
Therefore, the roots of the equation
are complex numbers and can be expressed as:
![\[ x = (12 \pm 6i√(6))/(-20) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qyke2aac3m5chvysaslbnjuvnlo7y9yl87.png)
![\[ x = (6 \pm 3i√(6))/(-10) \]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rynhlngu9xpmnfub256bsgti767fu4adfa.png)