Answer:
The graph in the attached figure
Explanation:
we have
![y=-(2x+6)^(2)+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/ctf7xll7gfu7uzqxtn691tiguq2nzlcef1.png)
Factor the leading coefficient
![y=-(2(x+3))^(2)+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/p410vqzf6zzyhrllhoaog3bwci1ir4h6nm.png)
![y=-4(x+3)^(2)+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/u4co3euhebxa34vhaii74mk3irb7w5nxrn.png)
This is the equation of a vertical parabola in vertex form
The parabola open downward
The vertex is a maximum
The vertex is the point (-3,3)
Find out the x-intercepts (values of x when the value of y is equal to zero)
For y=0
![0=-4(x+3)^(2)+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/amzjdqr9bo94nxuhqttzp9fsp1ujbxk41j.png)
![4(x+3)^(2)=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/9et1qx0xxf83b01jfhd5n62w8uf9p7lyqu.png)
![(x+3)^(2)=(3/4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uq1ru6op5jm66a2uw37hr4oeu6202rf4vm.png)
square root both sides
![(x+3)=(+/-)(√(3))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/a5gasg3r51xg798jyfrtpalny8afpmvjbj.png)
![x=-3(+/-)(√(3))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/wbcwyvqbvxi3uayt00jhuhfi4q5chitig4.png)
----->
![x1=-2.134](https://img.qammunity.org/2020/formulas/mathematics/high-school/hokv8jygmincwn9s0f634x6ab3axfb3zj3.png)
----->
![x2=-3.866](https://img.qammunity.org/2020/formulas/mathematics/high-school/q5f4lkeuiqtk8qxb79mcawwfu7hcbir9tz.png)
using a graphing tool
The graph in the attached figure