Answer: Option a
![\sigma=2.83](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yogolpcosw6vjhnethigx4ui7ouq8ctqoe.png)
Explanation:
The formula for calculating the standard sigma deviation is:
![\sigma=\sqrt{\frac{\sum_(i=1)^n(X_i-{\displaystyle {\overline {x}}})^2}{N}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aaxvz2cbup7uespx9o4m3cd05k9cevmqa4.png)
Where
is the average
is the data set
N is the amount of data
First we calculate the average
![{\displaystyle {\overline {x}}}=(2+4+6+8+10)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u6cijcca4p3se9q4agbf9gdoareux9n7xb.png)
![{\displaystyle {\overline {x}}}=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eb4e6g8896n7vp3ql25jmco4c1lkh4fogd.png)
Now we calculate the square differences
![(2-6)^2=16\\\\(4-6)^2=4\\\\(6-6)^2=0\\\\(8-6)^2=4\\\\(10-6)^2=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3kck8jj5hwc4k92q6rln0uo41puiaoxx72.png)
Then
![\sum(X_i-{\displaystyle {\overline {x}}})^2} = 16+ 4+0+4+16=40](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6vsqjbawyy4x4r80g0ofqhet5dkgutwf9y.png)
Finally the standard deviation for the set of data is:
![\sigma=\sqrt{(40)/(5)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/71rdql8xymr21pn7bgtkg4hhgtogpu0pcv.png)
![\sigma=2.83](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yogolpcosw6vjhnethigx4ui7ouq8ctqoe.png)