Answer: (24.02,25.98)
Explanation:
Answer:
Explanation:
Given : Sample size : n= 100
Sample mean :
![\overline{x}=25\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/rv3spz4kh4xuocsfq6qlth51q3b4v4o19s.png)
Standard deviation :
![\sigma=5\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/bdj46jgh9yk58qulnvcjgh2ohu4mgms2bv.png)
Significance level :
![\alpha: 1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/9x6075632zgcvqcj0z3yy9jc9lp14p66n9.png)
Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
The confidence interval for population mean is given by :-
![\overline{x}\pm\ z_(\alpha/2)(\sigma)/(√(n))\\\\=25\pm(1.96)(5)/(√(100))\\\\=25\pm0.98\\\\=(25-0.98,\ 25+0.98)=(24.02,25.98)](https://img.qammunity.org/2020/formulas/mathematics/college/7ag9wrbc3gu3jvzyugyvkpmpm61omhn0bp.png)
Hence, the 95% confidence interval for the population mean of training times is (24.02, 25.98).