Answer:
15.8
Explanation:
![x \in \mathbb{R}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tfu1dcyvebd9wy6mvu2jd6ldzu30rgp4d6.png)
![|5x^2 - 16| + |10x - 2|](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c2pigvypv7pcscwdakbhtjapmpmvcr2kv8.png)
Once we are working with absolute values, the expression will always be positive, therefore, to get the lowest value for the expression, the lowest value for x should be 0.
![|5(0)^2 - 16| + |10(0) - 2|](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fhczrcuhwuchv7stxd8tdziqtik2c55ouo.png)
![|- 16| + |- 2|](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tco54z2ynyr1d7sr1bbifmy7yl70ghe5ol.png)
![16 + 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/deot0cirwfkapdzrymbx9x2aua5fnl7yfx.png)
![18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ckertp47o2uugi5tc7hx91wgvpn6serk62.png)
But this is not the right approach and this is not the lowest value. For this question, you may think that
![|5x^2 - 16| + |10x - 2|>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tsancgxncd77c22rhwtguc1cceqzf91wp9.png)
For
![|5x^2 - 16| + |10x - 2|=0, \\exists x \in \math{R}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w7a41ebnhgc04237qwpvg5nqxzytt9rrkr.png)
Therefore,
![|5x^2 - 16| + |10x - 2|>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tsancgxncd77c22rhwtguc1cceqzf91wp9.png)
Solving that
![$|5x^2-16| \implies \left|5\left(-(4)/(√(5))\right)^2-16\right| = 0$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6z60o77blt8ou2iql4vcvsvzv0e3is9rr0.png)
![$|10x - 2| \implies \left|10\left((1)/(5) \right) - 2\right| =0$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3nqekru2a8e6bb44iwsf94phnvn0wfc0co.png)
Once it is true for all values of x in the Real set, it means the intervals,
![$x\le -(4)/(√(5))$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/soun3v3s72z2pbunq3xow6dsiup5l9rnqb.png)
![$-(4)/(√(5))<x<(1)/(5)$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yxcjz4w5xwq9mz2lq6vbgd38j3ycdjx9v1.png)
![$(1)/(5)\le x<(4)/(√(5))$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yiy10vyva6o2nf9echja05meojd4cxdolo.png)
![$x\ge (4)/(√(5))$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nl3ubs78yl1mwqbdri4hnapl2pef4018e5.png)
Are true and equal to
![x\in(-\infty, \infty)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zqjj3cn82r5x1315m8mrt5ui3eniem33w8.png)
The lowest value for
will be
![$(4)/(√(5) ) \text{ or } (1)/(5) $](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1qe3h780x165sukn20bmi71avr48k9dj63.png)
If you replace one of these values for
, you will find that
is the value that will give the lowest value for the expression.
![$\left|5\left((1)/(5)\right)^2-16\right| + \left|10\left((1)/(5) \right) - 2\right| = 15.8$](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6lmf54pbmo4kafm4csnmh98e62o7rvbzlk.png)