142k views
0 votes
Evaluate 14
∑ 3n + 2
n=1

User Kobbe
by
8.2k points

2 Answers

6 votes


\bf \displaystyle\sum_(n=1)^(14)~3n+2\implies \sum_(n=1)^(14)~3n+\sum_(n=1)^(14)~2\implies 3\sum_(n=1)^(14)~n+\sum_(n=1)^(14)~2 \\\\\\ 3\left[ \cfrac{14(14+1)}{2} \right]+[(14)(2)]\implies 3[7(15)]+[28]\implies 3(105)+[28] \\\\\\ 315+28\implies 343

User SUNDONG
by
8.3k points
3 votes

Answer:

343

Explanation:

The given expression is


\sum_(n=1)^(14)(3n+2)

We need to find the value of this expression.


\sum_(n=1)^(14)3n+\sum_(n=1)^(14)2


3\sum_(n=1)^(14)n+2\sum_(n=1)^(14)1

We know that ,


1+2+3+...+n=(n(n+1))/(2)


3(1+2+3+...+14)+2(1+1+1+...+1(14 times))


3* (14(14+1))/(2)+2(14)


3* 105+28


315+28


343

Therefore, the value of given expression is 343.

User NewestUser
by
8.0k points