Answer:
Magnetic field, B = 0.199 T
Step-by-step explanation:
It is given that,
Radius of circular loop, r = 11.7 cm = 0.117 m
Magnetic flux through the loop,
![\phi=8.6* 10^(-3)\ T/m^2](https://img.qammunity.org/2020/formulas/physics/high-school/vrgtboojgig46xxsyn3nvbkdimiq57xm6g.png)
The magnetic flux linked through the loop is :
![\phi=B.A](https://img.qammunity.org/2020/formulas/physics/middle-school/u2m35rgw1vv5ky4xs5xjqutz7e46zsn3le.png)
![\phi=BA\ cos\theta](https://img.qammunity.org/2020/formulas/physics/college/4jjxc8knlonv2oip842sw2ve6bxykk3s6j.png)
Here,
![\theta=0](https://img.qammunity.org/2020/formulas/physics/high-school/86hzk7x9eqf9sq0k1l59pcbz47m72ljehk.png)
![B=(\phi)/(A)](https://img.qammunity.org/2020/formulas/physics/college/rddormhtxqxatpu14ms2k31uq4v0p307rj.png)
or
![B=(\phi)/(\pi r^2)](https://img.qammunity.org/2020/formulas/physics/high-school/7k4cyndnb066wwvdfcz9iekixds6u82mxh.png)
![B=(8.6* 10^(-3))/(\pi (0.117 )^2)](https://img.qammunity.org/2020/formulas/physics/high-school/c9x1fbhxny13kb8anp8dqbiu3vp05uheb4.png)
B = 0.199 T
So, the strength of the magnetic field is 0.199 T. Hence, this is the required solution.