Answer: The height of the pile increasing is increasing at
![0.16(ft)/(min)](https://img.qammunity.org/2020/formulas/physics/college/fmm8b6xd105iuhme9vv65vig5fmylf9kx8.png)
Step-by-step explanation:
Given
Rate at which gravel is being dumped ,
![\frac{\mathrm{d} V}{\mathrm{d} t}=10(ft^(3))/(min)](https://img.qammunity.org/2020/formulas/physics/college/ek5903sw7zhr4zhh0bhnup731yfvd2e0jx.png)
=>Rate of increase of volume of cone=
![\frac{\mathrm{d} V}{\mathrm{d} t}=10(ft^(3))/(min)](https://img.qammunity.org/2020/formulas/physics/college/ek5903sw7zhr4zhh0bhnup731yfvd2e0jx.png)
If height of the cone at any instant is h then the diameter of cone is also h
Volume of cone ,
![V=(\pi r^(2)h)/(3)=(\pi h^(3))/(4* 3)=(\pi h^(3))/(12)](https://img.qammunity.org/2020/formulas/physics/college/vunm55o8r91utxpxa826vlvue6wpchzjb0.png)
Now differentiate both sides w.r.t time(t)
![\frac{\mathrm{d} V}{\mathrm{d} t}=(\pi h^(2))/(4)\frac{\mathrm{d} h}{\mathrm{d} t}](https://img.qammunity.org/2020/formulas/physics/college/dkyf29ofpiih4ojwuf5nhvjxait6r05xik.png)
Therefore at h = 9 ft
![10=(\pi * 9^(2))/(4)* \frac{\mathrm{d} h}{\mathrm{d} t}](https://img.qammunity.org/2020/formulas/physics/college/tu6avu1re2i9ruqf7q19ndak3s6vnhl6uz.png)
=>
![\frac{\mathrm{d} h}{\mathrm{d} t}=0.16(ft)/(min)](https://img.qammunity.org/2020/formulas/physics/college/jtqf3f5r5ybpeq3u3qw03feq3wq53cgscf.png)
Thus the height of the pile increasing is increasing at
![0.16(ft)/(min)](https://img.qammunity.org/2020/formulas/physics/college/fmm8b6xd105iuhme9vv65vig5fmylf9kx8.png)