Answer: (24755, 25245)
Explanation:
Given : Sample size : n= 400
Sample mean :
![\overline{x}= \$25,000](https://img.qammunity.org/2020/formulas/mathematics/college/bxxab6l4nbqvsf2i3bl677szdavfzngo4b.png)
Standard deviation :
![\sigma=\$2,500](https://img.qammunity.org/2020/formulas/mathematics/college/dz94vgy8yyl14kxzwghgtics4ow6v1ep63.png)
Significance level :
![\alpha: 1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/9x6075632zgcvqcj0z3yy9jc9lp14p66n9.png)
Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
The confidence interval for population mean is given by :-
![\overline{x}\pm\ z_(\alpha/2)(\sigma)/(√(n))\\\\=25000\pm(1.96)(2500)/(√(400))\\\\=25000\pm245\\\\=(25000-245,\ 25000+245)=(24755,\ 25245)](https://img.qammunity.org/2020/formulas/mathematics/college/re6vw2uktmm9ymnfji07sxfpe3jmps9y1c.png)
Hence, the 95% confidence interval for the mean salary of all graduates from the English department is (24755, 25245)