195k views
1 vote
A gamma-ray photon produces an electron and a positron, each with a kinetic energy of 261 keV . h=6.626×10−34J⋅s, c=2.998×108m/s, me=9.109×10−31kg, e=1.602×10−19C.

A) Determine the energy of the photon.B) Determine the wavelength of the photon.

User Pater
by
4.9k points

1 Answer

1 vote

Answer:

The energy and the wavelength of the photon are 1.546 MeV and
8.036*10^(-13)\ m.

Step-by-step explanation:

Given that,

Kinetic energy = 261 KeV

Planck's constant
h = 6.626*10^(−34)\ J.s

Speed of light
c=2.998*10^(8)\ m/s

Mass of electron
m_(e)=9.109*10^(-31)\ kg

Charge
q=1.602*10^(-19)\ C

(A). We need to calculate the energy of the photon

Using formula of rest mass energy


E=m_(0)c^2


E=9.109*10^(-31)*(3*10^(8))^2


E=8.198*10^(-14)\ J

Energy in eV


E=(8.198*10^(-14))/(1.6*10^(-19))


E=512375\ eV


E=0.512\ MeV

The total energy of photon


TE=2(E+K.E)


TE=2(0.512+0.261)


TE=1.546\ MeV

(B). We need to calculate the wavelength of the photon

Using formula of wavelength


\lambda=(hc)/(E)

Put the value into the formula


\lambda=(6.626*10^(−34)*3*10^(8))/(1.546*10^(6)*1.6*10^(-19))


\lambda=8.036*10^(-13)\ m

Hence, The energy and the wavelength of the photon are 1.546 MeV and
8.036*10^(-13)\ m.

User Patrick Gidich
by
4.7k points