Answer: 2.36
Explanation:
The formula to find the margin of error is given by :-
![E=z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/high-school/gvatqh5db2dr7iiytoygd6f5zzok8cgzbi.png)
Given : Significance level :
![\alpha: 1-0.94=0.06](https://img.qammunity.org/2020/formulas/mathematics/high-school/t8cpw52oriroheky1bixcl122gc5tzmofv.png)
Critical value :
[Using standard normal distribution table]
Sample size : n=49
Standard deviation : 8.8 ounces
Then , the margin of error will be :-
![E=(1.88)(8.8)/(√(49))\\\\\Rightarrow\ E=2.36342857143\approx2.36](https://img.qammunity.org/2020/formulas/mathematics/high-school/i2p0kcok4fb5tuhytaibf3eg8gl3rj8dk9.png)
Hence, the margin of error associated with a 94% confidence interval for the true population mean backpack weight = 2.36