Answer:
The speed of the electron and the radius of the circular path are
and
.
Step-by-step explanation:
Given that,
Magnetic field = 0.275 T
Kinetic energy
![K.E= 4.90*10^(-19)\ J](https://img.qammunity.org/2020/formulas/physics/high-school/tty6kaomvak70oilcrtqsnl77sq7pv4gyc.png)
We need to calculate the speed of the electron
Using kinetic energy
![K.E=(1)/(2)mv^2](https://img.qammunity.org/2020/formulas/physics/college/uzwv8simhub1bd8sat21zoco4xqxr82ekt.png)
![v=\sqrt{(2K.E)/(m)}](https://img.qammunity.org/2020/formulas/physics/high-school/9j4re0i5yhoxdp4dx50zk2cfgz725glgbt.png)
Where, m = mass of electron
K.E = kinetic energy
Put the value into the formula
![v= \sqrt{(2*4.90*10^(-19))/(9.1*10^(-31))}](https://img.qammunity.org/2020/formulas/physics/high-school/eqlar19edn4ngyrfncmwzpw1ui5ohy16fg.png)
![v=10.38*10^(5)\ m/s](https://img.qammunity.org/2020/formulas/physics/high-school/374jkru1vt9pdvel7zxmaadrji5aha9x5y.png)
We need to calculate the radius of the circular path
Using equation of force on charge in magnetic field
....(I)
Using centripetal force
....(II)
From equation (I) and (II)
![(mv^2)/(r)=qvB\sin\theta](https://img.qammunity.org/2020/formulas/physics/high-school/w4xfxefyoihc2b7musxlaw6qknmhbo5sx4.png)
![r=(mv^2)/(qvB\sin\theta)](https://img.qammunity.org/2020/formulas/physics/high-school/vnkvwvtlprh14j5n41ztddwcygt9ejhndz.png)
Put the value into the formula
![r=(9.1*10^(-31)*10.38*10^(5))/(1.6*10^(-19)*0.275\sin90^(\circ))](https://img.qammunity.org/2020/formulas/physics/high-school/28auvnpcp5k22e7ub0wiatuuo1z4u4c6hn.png)
![r=(9.1*10^(-31)*10.38*10^(5))/(1.6*10^(-19)*0.275)](https://img.qammunity.org/2020/formulas/physics/high-school/gi7b66ag5qtfbt92o3whvh4z86tbpd9v3n.png)
![r=2.15*10^(-5)\ m](https://img.qammunity.org/2020/formulas/physics/high-school/4a37logwcnl5z6f8tw224yl4qt7avvaa4f.png)
Hence, The speed of the electron and the radius of the circular path are
and
.