Answer:
![e=0.66](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkdc0zvoz72g8rhrlwzhutrpqi92pff9zb.png)
Explanation:
The eccentricity of an ellipse is given by:
![e=\sqrt{1-(b^2)/(a^2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/asxbt1eutd82alqja4v7fl3qdyms6vpb2i.png)
The given ellipse has equation:
![9x^2+16y^2-72x+64y-368=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ngqgypze36c7tvb1yd1lywa2yqlm6ft6m.png)
We can rewrite this equation in standard form to obtain:
![((x-4)^2)/(8^2)+(y+2)/(6^2)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j7lbl8wkpcen4fhzd5955mtmifdjyhrndw.png)
We compare to the general standard form equation:
![((x-h)^2)/(a^2)+(y-k)/(b^2)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oemuuqgpq4498wmg8ofkvws3ibssc5mst0.png)
to get:
![a=8,b=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2sg2x0dam2lasp2tir00qzbjslxagxhofw.png)
We substitute into the eccentricity formula to get:
![e=\sqrt{1-(6^2)/(8^2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1fknal7pnk2wnc9t3jjgxcl82bfrhye517.png)
![e=(√(7))/(4)=0.661438](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q0agyjz4ya8nlghzdieyhis8nvx5wds1v9.png)
The eccentricity is 0.66 to the nearest hundredth