Answer:
4x^2+12x+9y^2
Explanation:
the area of a square = L^2
L= Side
in this case L= 2x+3y
the area of a square = (2x+3y)^2 = (2x+3y)*(2x+3y)
we apply distributive property:
(2x+3y)*(2x+3y)= 2x*2x+2x*3y+3y*2x+3y*3y
(2x+3y)*(2x+3y) = 4x^2+6xy+6xy+9y^2
finally we have:
(2x+3y)*(2x+3y) = 4x^2+12xy+9y^2
the area of a square = 4x^2+12xy+9y^2