Answer:
![(17.96,20.64)](https://img.qammunity.org/2020/formulas/mathematics/college/auryprmghcn5wx2nrd9mha4b62r19asu1h.png)
Explanation:
The confidence interval for population mean is given by :-
![\overline{x}\ \pm\ t_(n-1,\alpha/2)(s)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/414ml14ibttn6r02wt9n60rhpg2l894wdk.png)
Given :
![\overline{x}=19.3](https://img.qammunity.org/2020/formulas/mathematics/college/49qqav61gc2zz0mepgasuvni5vn5oq4nas.png)
![s= 3.1](https://img.qammunity.org/2020/formulas/mathematics/college/j14bxl55tunkaos84yope8x96bkuxdeh0x.png)
n=23, which is a small sample(n<30), so we use t-test.
Significance level:
![1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/5qd9qf082gi434032wbkffz5a81c7up6dh.png)
Critical value :
![t_(n-1,\alpha/2)=t_(22,0.025)=2.074](https://img.qammunity.org/2020/formulas/mathematics/college/bxwtuyyd1xh468p4bhwymzm0og1sbj8n5h.png)
Then , the confidence interval for population mean will be :-
![19.3\ \pm\ (2.074)(3.1)/(√(23))\\\\\approx19.3\pm1.34\\\\=(19.3-1.34,19.3+1.34)\\\\=(17.96,20.64)](https://img.qammunity.org/2020/formulas/mathematics/college/yaor8xywuvgf86pzfuxtlbyf6izn9fb61z.png)
Hence, the 95% confidence interval for the population mean is
![(17.96,20.64)](https://img.qammunity.org/2020/formulas/mathematics/college/auryprmghcn5wx2nrd9mha4b62r19asu1h.png)