Answer:
Using the quadratic formula
![x=\frac{-b+/-\sqrt{b^(2)-4ac } }{2a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xa6sakjo4d7re15pknj2kc3jfb1rynovko.png)
The answer to the equation
using at least three significant figures is:
![x_(1)=0.194\\x_(2)=-15.694](https://img.qammunity.org/2020/formulas/mathematics/high-school/vdpznhsnqqvnr52lwz3zgn1watf1g53y2z.png)
Explanation:
The quadratic formula is used to solve polynomials of second degree.
We have a polynomial of second degree to be resolved with the quadratic formula:
(Eq. 1)
We know the quadratic formula is:
(Eq. 2)
To resolve the quadratic formula we need the a, b and c coefficients, we can find these coefficients in the equation 1.
a: Coefficient that accompanies
![x^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ep4nmi8emgex7xa4trp0z22cf0a8lzzrpe.png)
b: Coefficient that accompanies
![x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k3ozza40nv61jy1offmxaxutrb6y1c3ly5.png)
c: Independent term
With this information and the equation (1). We know the values of a, b and c
![a=2\\b=31\\c=-6.1\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/gki2s5ox18mbem835tl4pc8wkkc7bev8e5.png)
Now, we can replace these terms in the quadratic formula (Eq. 2)
The first root will be found using the positive sign before the square root:
![x=\frac{-b+\sqrt{b^(2)-4ac } }{2a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/48902vdom7l6zi1tasvdtdp9at0on2tgth.png)
![x=\frac{-31+\sqrt{31^(2)-[4*2*(-6.1)]} }{2*2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/dtkzsyj586k9svw5c060epifny8zrbpl0n.png)
![x=(-31+√(961-(-48.8)) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t2awlfa1y9rqsbw6yeo57ok8z13cciqj62.png)
![x=(-31+√(961+48.8) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ho11vmetgd48mdh12znoe1dlyblbfmswt1.png)
![x=(-31+√(1009.8) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/e8q6dqoibhtzqm4snbh9bx9itzwd2cls2x.png)
![x=(-31+31.777 )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5is4oj3twdpiablzmk9f1vihvn5sy2yj2p.png)
![x=0.194](https://img.qammunity.org/2020/formulas/mathematics/high-school/39ye0zddcuxdklbkzuoxdr5p7guxu1wg2p.png)
The second root will be found using the negative sign before the square root
:
![x=\frac{-b-\sqrt{b^(2)-4ac } }{2a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hugfipbqiwy4ki576wi3dkbjh6ek9i1s68.png)
![x=\frac{-31-\sqrt{31^(2)-[4*2*(-6.1)]} }{2*2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/eore5ux7kvwkrk8qlqy7q88zxrcdqfoq6q.png)
![x=(-31-√(961-(-48.8)) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/22wizbbym7sljtdgg3biq72gske8xusnhe.png)
![x=(-31-√(961+48.8) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nkyslseto2va036o3lx4zuxene1e09vb4x.png)
![x=(-31-√(1009.8) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/a6yvmhiy9x1l68zgul2e57nveana9xua83.png)
![x=(-31-31.777 )/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/s876xl17j5rbwxgo37bzwvxy0mjsj3ue4b.png)
![x=-15.694](https://img.qammunity.org/2020/formulas/mathematics/high-school/jnxl13zr9xoliiqn2wgtsij5ytqh44m9tp.png)