Answer : The correct option is, (C)
![√(3y)(3+2y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/ddvzcrfw6czoc13uexqmyywad8sww05r2y.png)
Step-by-step explanation :
The given expression is:
![3√(3y)-√(27y^5)+y^2√(75y)](https://img.qammunity.org/2020/formulas/mathematics/college/4t6xsxe1dzhj3zpu8pnmjl749yjvxix6y1.png)
First we have to break into factors.
![3√(3y)-√(3^3y^5)+y^2√(5^2* 3y)](https://img.qammunity.org/2020/formulas/mathematics/college/wl6laxdka9kjehmf0rr56z2tygcz0gl44f.png)
Now we have to make the power in even numbers.
![3√(3y)-√(3^2y^4(3y))+y^2√(5^2* 3y)](https://img.qammunity.org/2020/formulas/mathematics/college/ew4sgaycxv8o3x49qeqqenzcsrplm8c1md.png)
![3√(3y)-3y^2√(3y)+5y^2√(3y)](https://img.qammunity.org/2020/formulas/mathematics/college/z4y5dp589i2wnwubfy0s4ba0ejw6j1uv84.png)
Now we have to take common
from the given expression, we get:
![√(3y)(3-3y^2+5y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/i3uhx23dxhxrm5n22hdraaex4x80z3pjj0.png)
Now we have to add like terms, we get:
![√(3y)(3+2y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/ddvzcrfw6czoc13uexqmyywad8sww05r2y.png)
Therefore, the correct option is, (C)
![√(3y)(3+2y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/ddvzcrfw6czoc13uexqmyywad8sww05r2y.png)