Answer:
8 ft2
Explanation:
we know that
The diameter of the largest possible circle is equal to the length side of the square
The approximate area of the remaining board is equal to the area of the square minus the area of the circle
so
![A=b^(2)-\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5j02a2q1nuwxias5z9o4jwe2k3kuliz5j9.png)
we have
------> length side of the square
-----> the radius is half the diameter
![\pi =3.14](https://img.qammunity.org/2020/formulas/mathematics/high-school/595myhvi9x0vjp0b1ku7bsoelmk1x8jihg.png)
substitute the values
![A=6^(2)-(3.14)(3)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9hrexh2qsgh3tj4sh4xxaigskb96hw03ok.png)
![A=7.74\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dzxdl60jafqfb36ivprnhgxrdizvceifh1.png)
Round to the nearest whole number
![A=7.74=8\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q5wbthur8gzafc5gsfxk0hwdsmtqjjsorq.png)