Answer:
E = 7.99 *10^{-13} J
Step-by-step explanation:
the given reaction is
![_1 H^1 + _1 H^2 = _2 He^3](https://img.qammunity.org/2020/formulas/physics/college/6zcemzyabtqcc4wi1wvolpmas8ilmewhig.png)
we know that energy is given as
![E = \Delta mc^2](https://img.qammunity.org/2020/formulas/physics/college/m1sn277rfysyazhgdr1tab63yjj24t9ace.png)
![E = (m_1 H^1 + m_1 H^2 - _2 He^3)c^2](https://img.qammunity.org/2020/formulas/physics/college/zyiszyl78pdqt66snnquudhwtrst0pcm86.png)
where
m_1 H^1 is mass of proton = 1.672622 *10^{-27}
m_1 H^2 is mass of deuterium = 3.344494 *10^{-27}
m_2 H^3 is mass of He = 5.008234 *10^{-27}
E = [1.672622 *10^{-27} + 3.344494 *10^{-27} - 5.008234 *10^{-27} ] *(3*10^8)^2
E = 7.99 *10^{-13} J