Answer:
0.981
Explanation:
We have to find the probability that an individual who has the symptoms and who reacts positively to the test has hepatitis
Let
be the event that denotes the symptoms has hepatitis and
denotes the symptoms have not hepatitis
Let A be the event the denotes the blood test result positive
We have to find the value of
![P(E_1/A)](https://img.qammunity.org/2020/formulas/mathematics/college/2l8tv2vhhxwg1993jufhsh3e3686vr7s5x.png)
We have
![P(E_1)=0.75](https://img.qammunity.org/2020/formulas/mathematics/college/sis07upcjvhnkiutod9wmowwnq3ia99n1v.png)
![P(E_2)=1-0.75=0.25](https://img.qammunity.org/2020/formulas/mathematics/college/5ks6aj4pw7xcv4p41ifzmtdj3dwj6xnddg.png)
![P(A/E_1)=86%=0.86](https://img.qammunity.org/2020/formulas/mathematics/college/p66h3m2ypvz9y7k1kzkx6ygf5lg493e8ky.png)
![P(A/E_2)=5%=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/io25pfa6iulnwviodsy0s415ln1gv3bwyb.png)
Using formula
![P(E_1/A)=(P(E_1)* P(A/E_1))/(P(E_1)\cdotP(A/E_1)+P(E_2)\cdotP(A/E_2)](https://img.qammunity.org/2020/formulas/mathematics/college/wwuix3hrf2njaa2p2wt7mlt6xnv7djc0ph.png)
Substitute the values in the given formula
Then,we get
![P(E_1/A)=(0.75* .86)/(0.75*0.86+0.25* 0.05)](https://img.qammunity.org/2020/formulas/mathematics/college/dgv8uvzf1ca0vlr7ayv06fl77hotwznldy.png)
![P(E_1/A)=(0.645)/(0.6575)=0.9809](https://img.qammunity.org/2020/formulas/mathematics/college/cxb0idqgedhyqi2zq5kad53xkt8l0tz3ge.png)
![P(E_1/A)=0.981](https://img.qammunity.org/2020/formulas/mathematics/college/h7y16yxnu1rcza3yqub5eauy5u6vg8dhpx.png)
Hence, the probability that an individual who has the symptoms and who reacts positively to the test actually has hepatitis =0.981