Answer: The half-life of a first-order reaction is,
![3.3* 10^2s](https://img.qammunity.org/2020/formulas/chemistry/college/7nhfxqbgq74du4059bb1h3kakno7pgld40.png)
Step-by-step explanation:
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=(2.303)/(t)\log([A_o])/([A])](https://img.qammunity.org/2020/formulas/chemistry/college/67w3lufh8bppkbbcp1xaut7f9029vt6k0l.png)
where,
k = rate constant = ?
t = time taken = 440 s
= initial amount of the reactant = 0.50 M
[A] = left amount = 0.20 M
Putting values in above equation, we get:
![k=(2.303)/(440s)\log(0.50)/(0.20)](https://img.qammunity.org/2020/formulas/chemistry/college/zj2bglfb82dv41c75n1htdou7hs5f55ddj.png)
![k=2.083* 10^(-3)s^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/ks742ilutgrzbmox8lyxbb93oa0cjndyrz.png)
The equation used to calculate half life for first order kinetics:
![t_(1/2)=(0.693)/(k)](https://img.qammunity.org/2020/formulas/biology/high-school/fy6i00h7ggodwuofvgug8jit5mehtycs24.png)
Putting values in this equation, we get:
![t_(1/2)=(0.693)/(2.083* 10^(-3)s^(-1))=332.69s=3.3* 10^2s](https://img.qammunity.org/2020/formulas/chemistry/college/o4m6kqd5wiolt3b5dby6tp8cl4z9e2w1yg.png)
Therefore, the half-life of a first-order reaction is,
![3.3* 10^2s](https://img.qammunity.org/2020/formulas/chemistry/college/7nhfxqbgq74du4059bb1h3kakno7pgld40.png)